A Highly Sensitive Polymerase Chain Reaction Method Detects Activating Mutations of the GNAS Gene in Peripheral Blood Cells in McCune-Albright Syndrome or Isolated Fibrous Dysplasia

Steven A. Lietman, Changlin Ding and Michael A. Levine

This information is current as of April 8, 2007

Supplementary material
Commentary and Perspective, data tables, additional images, video clips and/or translated abstracts are available for this article. This information can be accessed at http://www.ejbjs.org/cgi/content/full/87/11/2489/DC1

Subject Collections
Articles on similar topics can be found in the following collections

- Adult Disease (1282 articles)
- Pediatric Disease (285 articles)
- Neoplastic Disease (145 articles)
- Congenital Anomalies (87 articles)
- Pathology (39 articles)
- Molecular Biology (28 articles)

Reprints and Permissions
Click here to order reprints or request permission to use material from this article, or locate the article citation on jbjs.org and click on the [Reprints and Permissions] link.

Publisher Information
The Journal of Bone and Joint Surgery
20 Pickering Street, Needham, MA 02492-3157
www.jbjs.org
A Highly Sensitive Polymerase Chain Reaction Method Detects Activating Mutations of the GNAS Gene in Peripheral Blood Cells in McCune-Albright Syndrome or Isolated Fibrous Dysplasia

BY STEVEN A. LIETMAN, MD, CHANGLIN DING, MD, AND MICHAEL A. LEVINE, MD

Investigation performed at the Departments of Orthopaedic Surgery, Biomedical Engineering, and Pediatrics, the Cleveland Clinic Foundation, Cleveland, Ohio, and the Ilyssa Center for Molecular and Cellular Endocrinology at the Johns Hopkins School of Medicine, Baltimore, Maryland

Background: The somatic nature of mutations in the GNAS gene in McCune-Albright syndrome and isolated fibrous dysplasia makes their identification difficult. Conventional methods for the detection of mosaic mutations of GNAS have required polymerase chain reaction analysis of genomic DNA from affected tissues or multiple rounds of tandem polymerase chain reaction and endonuclease digestion to enrich for mutant alleles in genomic deoxyribonucleic acid (DNA) from other tissues. Peptide nucleic acid (PNA) primers specifically block synthesis from the nonmutant or wild-type allele. We therefore used PNA-clamping to detect low copy numbers of mutant GNAS alleles in DNA from peripheral blood cells from patients with McCune-Albright syndrome and fibrous dysplasia.

Methods: We applied the PNA-clamping method to the analysis of genomic DNA from peripheral blood cells of thirteen patients with McCune-Albright syndrome and three patients with isolated fibrous dysplasia. Polymerase chain reaction was performed in the presence and absence of PNA, and the polymerase chain reaction products were sequenced. In the absence of PNA, a strong 325 base-pair polymerase chain reaction band was generated from all samples; in the presence of PNA, there was an approximately 50% to 90% reduction in the intensity of this polymerase chain reaction product.

Results: In the absence of PNA, direct sequencing of the polymerase chain reaction products demonstrated R201 mutations in GNAS alleles of three of the thirteen patients with McCune-Albright syndrome and none of the three patients with fibrous dysplasia. In contrast, in the presence of PNA, R201 mutations were detected in eleven of the thirteen patients with McCune-Albright syndrome and in all three of the patients with fibrous dysplasia. In mixing experiments involving the use of wild-type and mutant DNA samples, we were able to determine the presence of a mutant GNAS allele in the equivalent of one cell in 1000 to 5000 cells.

Conclusions: Inclusion of a specific PNA primer in the polymerase chain reaction for GNAS exon 8 allows the selective amplification of low numbers of mutant alleles, and it permits detection of activating mutations in genomic DNA from peripheral blood cells in patients with McCune-Albright syndrome and fibrous dysplasia.

Level of Evidence: Diagnostic Level I. See Instructions to Authors for a complete description of levels of evidence.

McCune-Albright syndrome is a sporadic disorder that is characterized by the clinical triad of polyostotic fibrous dysplasia, café au lait skin lesions, and endocrine hyperfunction. The prominent features of McCune-Albright syndrome are due to constitutive (i.e., hormone-independent) activation of the adenylyl cyclase signaling pathway in affected tissues and unregulated synthesis of the second messenger cyclic adenosine monophosphate (cAMP). The molecular defect in McCune-Albright syndrome arises from missense mutations in exon 8 of the GNAS gene
that lead to replacement of arginine 201 (Arg201 or R201) and conversion to the \textit{gsp} oncogene that encodes the stimulatory guanine nucleotide binding regulatory protein alpha (G\textsubscript{sα}) lacking intrinsic GTPase activity3-5. Cells containing these activating mutations are present in affected endocrine tissues, skin, and bone from patients with McCune-Albright syndrome as well as in many unaffected tissues, but they are not present in all cells of affected patients, even within affected organs. Mutation-bearing cells are distributed in a mosaic pattern, with the greatest number being present in the most abnormal areas of affected tissues, consistent with the fact that the mutation is not germline but rather is a postzygotic somatic mutation3-5.

The mosaic pattern of distribution of cells bearing the GNAS mutation and the variable number of affected cells in a tissue have hampered ready identification of the gene mutation in peripheral blood cells as mutant GNAS alleles may represent only a small proportion of the total number of GNAS alleles present in DNA. Detection of mutant GNAS genes in DNA samples was previously demonstrated to be enhanced by a protocol in which multiple rounds of nested polymerase chain reaction were performed in conjunction with restriction endonuclease treatment to digest wild-type products, thus enriching the abundance of mutant alleles for selective amplification6,7.

More recently, Bianco et al.8 described a protocol involving the use of PNA-clamping5,9-14 as a means of detecting GNAS mutations in DNA samples from fibrous dysplasia lesions (Fig. 1). Karadag et al.15 further evaluated PNA-clamping with fluorescence resonance energy transfer and noted that this technique was useful for detecting the relative percentage of cells in lesional tissue with an Arg201 mutation. PNAs are polynucleotide mimics having a 2-aminoethylglycine backbone in lieu of the deoxyribose phosphate backbone of DNA. PNAs form PNA:DNA hybrids that are more stable than DNA:DNA hybrids are, and PNAs are more sensitive to internal base mismatches with their DNA complement. In this technique, a PNA that is perfectly complementary to the wild-type Arg201 nucleotide sequence overlaps the binding site of the forward polymerase chain reaction primer. The PNA prevents the polymerase chain reaction primer from binding to the normal sequence and thereby blocks amplification of the wild-type allele. Because mutant GNAS alleles contain a single-base mismatch, the PNA cannot block annealing of the forward polymerase chain reaction primer to mutant GNAS alleles, thus enabling selective amplification of the mutant GNAS alleles. In the present study, we demonstrate the utility of the PNA-clamping technique for the detection of GNAS mutations in genomic DNA isolated from peripheral blood cells of subjects with McCune-Albright syndrome or fibrous dysplasia.
negative result on analysis of peripheral blood (observed in two of the patients in the present study) does not exclude the diagnosis of McCune-Albright syndrome or fibrous dysplasia, the ability to diagnose McCune-Albright syndrome or fibrous dysplasia on the basis of blood samples could prevent many diagnostic biopsies and thereby avoid complications such as fracture, infection, or anesthetic complications.

Materials and Methods

The present study was approved by the internal review board at our institution. Consent was obtained from all patients (or from their family members) prior to inclusion in the study. Peripheral blood samples were obtained from individuals with either McCune-Albright syndrome or fibrous dysplasia during the course of routine care or research evaluation (see Appendix). Whole blood was collected in tubes containing ethylenediaminetetraacetic acid (EDTA), and leukocytes were isolated with the Histopaque kit (Sigma, St. Louis, Missouri) as recommended on the package insert. DNA was then obtained by means of phenol chloroform extraction.

A PNA probe was synthesized on a PerSeptive Biosystems Expedite instrument (PerSeptive Biosystems, Framingham, Massachusetts) by Dr. Nga Nguyen at the National Institutes of Health (Center for Biologics Evaluation and Research, Facility for Biotechnology Research, Peptide Laboratory) and was purified by means of reverse-phase high performance liquid chromatography. The sequences of the PNA (base pairs 642 to 653 for codons 199 to 202) and primers used to amplify a portion of exon 8 of GNAS were as follows:

- PNA: Gly-NH₂-CGCTGCCGTGTC-HAc
- Forward primer: 5´-GTTTCAGGACCTGCTTCGC-3´
- Reverse primer: 5´-GCAAAGCCAAGAGCGTGAG-3´

Each polymerase chain reaction contained 200 to 500 ng of target genomic DNA, 2.5 U of AmpliTaq Gold polymerase (PerkinElmer, Boston, Massachusetts), 1 µg each of forward and reverse polymerase chain reaction primer, and 2 µg of the PNA in a 100-µl final volume. After an initial denaturation at 94°C for fifteen minutes to activate the polymerase, forty polymerase chain reaction cycles followed, consisting of a denaturation step to 94°C for thirty seconds, a PNA hybridization step at 68°C for sixty seconds, a primer annealing step at 55°C for thirty seconds, and an extension step at 72°C for sixty seconds. A final extension step was performed at 72°C for seven minutes.

At the conclusion of the polymerase chain reaction, the sample was electrophoresed through a 5% polyacrylamide gel in TBE buffer, stained with ethidium bromide, and visualized on an ultraviolet transilluminator. Bands corresponding to an expected 325-base pair (bp) product were isolated from the polyacrylamide gel and were directly sequenced by polymerase chain reaction with use of the forward primer and the Thermo Sequenase radiolabeled terminator cycle sequencing kit according to the manufacturer’s instructions (Amersham Biosciences, Piscataway, New Jersey). For mixing experiments, the DNA sample from the patients with McCune-Albright syndrome contained equal amounts of wild-type and mutant DNA.
Results

All of the patients with McCune-Albright syndrome had café au lait skin lesions, fibrous dysplasia bone lesions, and endocrinopathy and therefore met the clinical diagnostic criteria for McCune-Albright syndrome. All of the patients with fibrous dysplasia had only fibrous dysplasia bone lesions and therefore met the clinical diagnostic criteria for fibrous dysplasia.

In the absence of PNA, a strong 325-bp polymerase chain reaction band was generated from all samples and direct sequencing of the polymerase chain reaction products demonstrated R201 mutations in only three of the thirteen patients with McCune-Albright syndrome and in none of the three patients with fibrous dysplasia. When polymerase chain reaction was performed in the presence of PNA, there was an approximately 50% to 90% reduction in the intensity of this polymerase chain reaction product (Fig. 2).

In the presence of PNA, direct sequence analysis revealed the R201 mutation in eleven of the thirteen patients with McCune-Albright syndrome (four patients with R201H, six patients with R201C, and one patient with R201L) (Fig. 3) and in all three patients with fibrous dysplasia (all with R201C). In experiments involving the use of wild-type and mutant DNA samples mixed together, we were able to determine the presence of a mutant GNAS allele in the equivalent of one cell with the mutation among 1000 to 2000 normal cells (representing a rate of detection of 0.1% to 0.05%) (Fig. 4). DNA samples from normal subjects served as a negative control and showed wild-type GNAS sequence in the absence or presence of PNA and no mutation in the presence of PNA (data not shown).

Discussion

The mosaic pattern of distribution of cells bearing the GNAS mutation, and the variable number of affected cells in a tissue, has complicated the identification of mutant GNAS alleles, which may represent only a small proportion of the GNAS alleles present in DNA isolated from tissue or peripheral blood. Detection of mutant GNAS genes in DNA samples had been previously enhanced by a protocol in which multiple rounds of nested polymerase chain reaction were performed in conjunction with restriction endonuclease treatment to digest wild-type products, thus enriching the abundance of mutant alleles for selective amplification. However, this technique is not applicable for all mutation sites and has been shown to have variable sensitivity. Bianco et al. and Karadag et al. previously applied the PNA-clamping technique to analyze lesional tissue from patients with McCune-Albright syndrome, which suggested to us that this approach might be useful for analyzing peripheral blood samples from patients with McCune-Albright syndrome or isolated fibrous dysplasia. While the presence of café au lait and endocrine abnormalities in association with McCune-Albright syndrome and fibrous dysplasia suggests that there might be cells in the blood with GNAS mutations, and while several investigators have shown that humoral factors are involved in hypophosphatemic rickets accompanying McCune-Albright syndrome, no one to our knowledge has been able to consistently find the mutation in peripheral blood samples, and, in general, the diagnosis is still made clinically. In the present study, we found that PNA-clamping provided an enhancement over standard polymerase chain reaction as well as a simple alternative to nested polymerase chain reaction.
schemes in the detection of GNAS mutations and that it detected GNAS mutations in genomic DNA isolated from peripheral blood leukocytes in eleven of thirteen patients with McCune-Albright syndrome and three of three patients with fibrous dysplasia. The ability to detect GNAS mutations in DNA isolated from peripheral blood of patients with McCune-Albright syndrome implies that the leukocytes contain mutant GNAS alleles and/or that cells from affected tissues are also present in the circulation.

Similarly, the presence of cells bearing the GNAS-activating mutation in the circulation of patients with fibrous dysplasia suggests either that the somatic mosaicism is more widespread than clinically suspected or that cells from fibrous dysplasia lesions are shed into the circulation. Additional studies will be needed to distinguish between these two alternatives, and some patients may not have detectable mutations in the blood if their involvement does not extend to the peripheral blood. In conclusion, our study adds support to the growing enthusiasm for and utility of PNA-clamping in molecular diagnostics. The ability to identify somatic mutations in cells that represent only a small percentage of the total cell mass may allow this technique to be adapted for the analysis of blood or tissues in patients with malignant disease in order to increase the sensitivity of cancer-staging and therefore improve decisions about the need for and efficacy of systemic treatment.

Appendix

A table presenting clinical details of all study subjects is available with the electronic versions of this article, on our web site at www.jbjs.org (go to the article citation and click on “Supplementary Material”) and on our quarterly CD-ROM (call our subscription department, at 781-449-9780, to order the CD-ROM).

Steven A. Lietman, MD
Changlin Ding, MD
Michael A. Levine, MD
In support of their research or preparation of this manuscript, one or more of the authors received grants or outside funding from the National Institutes of Health US Public Health Service Research grants K08-AR47661 (SAL), DK34281 and DK56178 (MAL), and General Clinical Research Center Grant RR0035. Dr. Lietman is the recipient of and this work is supported by a Career Development Award from the Orthopaedic Research and Education Foundation. None of the authors received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other charitable or nonprofit organization with which the authors are affiliated or associated.

doi:10.2106/JBJS.E.00160

References

